Abstract:Time series forecasting has long been dominated by advances in model architecture, with recent progress driven by deep learning and hybrid statistical techniques. However, as forecasting models approach diminishing returns in accuracy, a critical yet underexplored opportunity emerges: the strategic use of post-processing. In this paper, we address the last-mile gap in time-series forecasting, which is to improve accuracy and uncertainty without retraining or modifying a deployed backbone. We propose $δ$-Adapter, a lightweight, architecture-agnostic way to boost deployed time series forecasters without retraining. $δ$-Adapter learns tiny, bounded modules at two interfaces: input nudging (soft edits to covariates) and output residual correction. We provide local descent guarantees, $O(δ)$ drift bounds, and compositional stability for combined adapters. Meanwhile, it can act as a feature selector by learning a sparse, horizon-aware mask over inputs to select important features, thereby improving interpretability. In addition, it can also be used as a distribution calibrator to measure uncertainty. Thus, we introduce a Quantile Calibrator and a Conformal Corrector that together deliver calibrated, personalized intervals with finite-sample coverage. Our experiments across diverse backbones and datasets show that $δ$-Adapter improves accuracy and calibration with negligible compute and no interface changes.
Abstract:Enabling large language models (LLMs) to solve complex reasoning tasks is a key step toward artificial general intelligence. Recent work augments LLMs with external tools to enable agentic reasoning, achieving high utility and efficiency in a plug-and-play manner. However, the inherent vulnerabilities of such methods to malicious manipulation of the tool-calling process remain largely unexplored. In this work, we identify a tool-specific attack surface and propose Sponge Tool Attack (STA), which disrupts agentic reasoning solely by rewriting the input prompt under a strict query-only access assumption. Without any modification on the underlying model or the external tools, STA converts originally concise and efficient reasoning trajectories into unnecessarily verbose and convoluted ones before arriving at the final answer. This results in substantial computational overhead while remaining stealthy by preserving the original task semantics and user intent. To achieve this, we design STA as an iterative, multi-agent collaborative framework with explicit rewritten policy control, and generates benign-looking prompt rewrites from the original one with high semantic fidelity. Extensive experiments across 6 models (including both open-source models and closed-source APIs), 12 tools, 4 agentic frameworks, and 13 datasets spanning 5 domains validate the effectiveness of STA.
Abstract:Recent years have witnessed increasing interest in extending large language models into agentic systems. While the effectiveness of agents has continued to improve, efficiency, which is crucial for real-world deployment, has often been overlooked. This paper therefore investigates efficiency from three core components of agents: memory, tool learning, and planning, considering costs such as latency, tokens, steps, etc. Aimed at conducting comprehensive research addressing the efficiency of the agentic system itself, we review a broad range of recent approaches that differ in implementation yet frequently converge on shared high-level principles including but not limited to bounding context via compression and management, designing reinforcement learning rewards to minimize tool invocation, and employing controlled search mechanisms to enhance efficiency, which we discuss in detail. Accordingly, we characterize efficiency in two complementary ways: comparing effectiveness under a fixed cost budget, and comparing cost at a comparable level of effectiveness. This trade-off can also be viewed through the Pareto frontier between effectiveness and cost. From this perspective, we also examine efficiency oriented benchmarks by summarizing evaluation protocols for these components and consolidating commonly reported efficiency metrics from both benchmark and methodological studies. Moreover, we discuss the key challenges and future directions, with the goal of providing promising insights.
Abstract:In recent years, large language models (LLMs) have demonstrated significant potential in complex reasoning tasks like mathematical problem-solving. However, existing research predominantly relies on reinforcement learning (RL) frameworks while overlooking supervised fine-tuning (SFT) methods. This paper proposes a new two-stage training framework that enhances models' self-correction capabilities through self-generated long chain-of-thought (CoT) data. During the first stage, a multi-turn dialogue strategy guides the model to generate CoT data incorporating verification, backtracking, subgoal decomposition, and backward reasoning, with predefined rules filtering high-quality samples for supervised fine-tuning. The second stage employs a difficulty-aware rejection sampling mechanism to dynamically optimize data distribution, strengthening the model's ability to handle complex problems. The approach generates reasoning chains extended over 4 times longer while maintaining strong scalability, proving that SFT effectively activates models' intrinsic reasoning capabilities and provides a resource-efficient pathway for complex task optimization. Experimental results demonstrate performance improvements on mathematical benchmarks including GSM8K and MATH500, with the fine-tuned model achieving a substantial improvement on competition-level problems like AIME24. Code will be open-sourced.
Abstract:Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.




Abstract:Recent image generation approaches often address subject, style, and structure-driven conditioning in isolation, leading to feature entanglement and limited task transferability. In this paper, we introduce 3SGen, a task-aware unified framework that performs all three conditioning modes within a single model. 3SGen employs an MLLM equipped with learnable semantic queries to align text-image semantics, complemented by a VAE branch that preserves fine-grained visual details. At its core, an Adaptive Task-specific Memory (ATM) module dynamically disentangles, stores, and retrieves condition-specific priors, such as identity for subjects, textures for styles, and spatial layouts for structures, via a lightweight gating mechanism along with several scalable memory items. This design mitigates inter-task interference and naturally scales to compositional inputs. In addition, we propose 3SGen-Bench, a unified image-driven generation benchmark with standardized metrics for evaluating cross-task fidelity and controllability. Extensive experiments on our proposed 3SGen-Bench and other public benchmarks demonstrate our superior performance across diverse image-driven generation tasks.




Abstract:Vision-Language Models (VLMs), such as CLIP, have achieved impressive zero-shot recognition performance but remain highly susceptible to adversarial perturbations, posing significant risks in safety-critical scenarios. Previous training-time defenses rely on adversarial fine-tuning, which requires labeled data and costly retraining, while existing test-time strategies fail to reliably distinguish between clean and adversarial inputs, thereby preventing both adversarial robustness and clean accuracy from reaching their optimum. To address these limitations, we propose Test-Time Padding (TTP), a lightweight defense framework that performs adversarial detection followed by targeted adaptation at inference. TTP identifies adversarial inputs via the cosine similarity shift between CLIP feature embeddings computed before and after spatial padding, yielding a universal threshold for reliable detection across architectures and datasets. For detected adversarial cases, TTP employs trainable padding to restore disrupted attention patterns, coupled with a similarity-aware ensemble strategy for a more robust final prediction. For clean inputs, TTP leaves them unchanged by default or optionally integrates existing test-time adaptation techniques for further accuracy gains. Comprehensive experiments on diverse CLIP backbones and fine-grained benchmarks show that TTP consistently surpasses state-of-the-art test-time defenses, delivering substantial improvements in adversarial robustness without compromising clean accuracy. The code for this paper will be released soon.
Abstract:The inference latency of diffusion models remains a critical barrier to their real-time application. While trajectory-based and distribution-based step distillation methods offer solutions, they present a fundamental trade-off. Trajectory-based methods preserve global structure but act as a "lossy compressor", sacrificing high-frequency details. Conversely, distribution-based methods can achieve higher fidelity but often suffer from mode collapse and unstable training. This paper recasts them from independent paradigms into synergistic components within our novel Hierarchical Distillation (HD) framework. We leverage trajectory distillation not as a final generator, but to establish a structural ``sketch", providing a near-optimal initialization for the subsequent distribution-based refinement stage. This strategy yields an ideal initial distribution that enhances the ceiling of overall performance. To further improve quality, we introduce and refine the adversarial training process. We find standard discriminator structures are ineffective at refining an already high-quality generator. To overcome this, we introduce the Adaptive Weighted Discriminator (AWD), tailored for the HD pipeline. By dynamically allocating token weights, AWD focuses on local imperfections, enabling efficient detail refinement. Our approach demonstrates state-of-the-art performance across diverse tasks. On ImageNet $256\times256$, our single-step model achieves an FID of 2.26, rivaling its 250-step teacher. It also achieves promising results on the high-resolution text-to-image MJHQ benchmark, proving its generalizability. Our method establishes a robust new paradigm for high-fidelity, single-step diffusion models.
Abstract:Organizations are increasingly exploring delegation of screening and negotiation tasks to AI systems, yet deployment in high-stakes B2B settings is constrained by governance: preventing unauthorized commitments, ensuring sufficient information before bargaining, and maintaining effective human oversight and auditability. Prior work on large language model negotiation largely emphasizes autonomous bargaining between agents and omits practical needs such as staged information gathering, explicit authorization boundaries, and systematic feedback integration. We propose GAIA, a governance-first framework for LLM-human agency in B2B negotiation and screening. GAIA defines three essential roles - Principal (human), Delegate (LLM agent), and Counterparty - with an optional Critic to enhance performance, and organizes interactions through three mechanisms: information-gated progression that separates screening from negotiation; dual feedback integration that combines AI critique with lightweight human corrections; and authorization boundaries with explicit escalation paths. Our contributions are fourfold: (1) a formal governance framework with three coordinated mechanisms and four safety invariants for delegation with bounded authorization; (2) information-gated progression via task-completeness tracking (TCI) and explicit state transitions that separate screening from commitment; (3) dual feedback integration that blends Critic suggestions with human oversight through parallel learning channels; and (4) a hybrid validation blueprint that combines automated protocol metrics with human judgment of outcomes and safety. By bridging theory and practice, GAIA offers a reproducible specification for safe, efficient, and accountable AI delegation that can be instantiated across procurement, real estate, and staffing workflows.




Abstract:Recent advances in text-to-video generation have achieved impressive perceptual quality, yet generated content often violates fundamental principles of physical plausibility - manifesting as implausible object dynamics, incoherent interactions, and unrealistic motion patterns. Such failures hinder the deployment of video generation models in embodied AI, robotics, and simulation-intensive domains. To bridge this gap, we propose PhysCorr, a unified framework for modeling, evaluating, and optimizing physical consistency in video generation. Specifically, we introduce PhysicsRM, the first dual-dimensional reward model that quantifies both intra-object stability and inter-object interactions. On this foundation, we develop PhyDPO, a novel direct preference optimization pipeline that leverages contrastive feedback and physics-aware reweighting to guide generation toward physically coherent outputs. Our approach is model-agnostic and scalable, enabling seamless integration into a wide range of video diffusion and transformer-based backbones. Extensive experiments across multiple benchmarks demonstrate that PhysCorr achieves significant improvements in physical realism while preserving visual fidelity and semantic alignment. This work takes a critical step toward physically grounded and trustworthy video generation.